Evaluasi Dimensi Tiang Pancang Dermaga di Daerah Pesisir Kabupaten Kolaka dengan Mempertimbangkan Pengaruh Likuifaksi

Authors

  • A. Minmahddun Jurusan Teknik Sipil, Fakultas Teknik Universitas Halu Oleo, Kendari, Indonesia 93232
  • U. Mangidi Jurusan Teknik Sipil, Fakultas Teknik Universitas Halu Oleo, Kendari, Indonesia 93232

DOI:

https://doi.org/10.22487/renstra.v5i2.686

Keywords:

pier, liquefaction, bearing capacity, deflection

Abstract

The pier in the coastal area of Kolaka Regency plays a crucial role in the distribution of goods and economic enhancement. However, the risk of liquefaction due to earthquakes threatens the stability and safety of the pier structure. This study aims to evaluate the dimensions of the pier piles considering the effects of liquefaction. The research methodology includes the analysis of liquefaction potential using the NCEER method, axial load capacity analysis using the Briaud method, and deflection analysis using the Broms method. Foundation analysis under liquefaction conditions is simplified by assuming the SPT values in the liquefied soil layer to be zero. Standard Penetration Test (SPT) data were used to assess soil conditions at the pier location. The analysis results indicate that the sand layer at a depth of 6-12 meters has a high potential for liquefaction, primarily due to the high content of coarse grains and a fine particle percentage of 15%. The increase in peak ground acceleration (PGA) in the Sulawesi region also amplifies the potential for liquefaction. The foundation analysis without considering liquefaction shows that the pile dimensions with a depth of 25 meters meet the design criteria, although deflection approaches the permissible limit. However, under liquefaction conditions, there is a slight reduction in axial load capacity (3%), but the pile deflection increases beyond the allowable limit. To mitigate the risk of liquefaction and ensure the safety of the pier, it is recommended to extend the pile depth to 28 meters.

Downloads

Download data is not yet available.

References

R. Akbar, A.B. Buchori, Sriyana, and H. Nugroho, “Perencanaan Pengembangan Dermaga Kartini Jepara”, Jurnal Karya Teknik Sipil, vol. 6, no. 4, p. 95, 2017,

E. Sution, Y. Prianto, I.R.H. Putra, and L.A.B. Gea, “Muara Angke Sebagai Penopang Wisata Pesisir di Kepulauan Seribu”, Jurnal Serina Sosial Humaniora, vol. 1, no. 2, p. 169, 2023.

B.M. Das and G.V. Ramana, Principle of Soil Dynamics, Stamford: Cengage Learning, 2011.

Y. Litha, Fenomena Likuifaksi, Ratusan Rumah di Petobo Tenggelam, Jakarta: VOA Indonesia, 2018.

H. Setiawan and S. Kurniawan, “Karakteristik Tanah Terdampak dan Tidak Terdampak Likuifaksi Berdasarkan Uji Swedish Weight Sounding Pada Kelurahan Petobo”, Inersia: Jurnal Teknik Sipil, vol. 13, no. 1, p. 1, 2021.

T.L. Youd and I.M. Idriss, “Liquefaction Resistance of Soils: Summary Report From the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 4, p. 297, 2001.

J.L. Briaud, L. Tucker, R. L. Lytton, and H.M. Coyle, Behaviour of Piles and Pile Groups in Cohesionless Soils, Report No. FHWA/RD-83/038. Washington: FHWA, 1985.

B.B. Broms, “Lateral Resistance of Piles in Cohesionless Soils”, Journal of the Soil Mechanics and Foundations Division, vol. 90, no. 3, p. 123, 1964.

BPS, Kecamatan Wolo Dalam Angka 2023, Kolaka: Badan Pusat Statistik Kabupaten Kolaka, 2023.

H.B. Seed and I.M. Idriss, “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and Foundations Division, vol. 97, no. 9, p. 1249, 1971.

BSN, SNI 8460:2017 Persyaratan Perancangan Geoteknik, Jakarta: Badan Standarisasi Nasional, 2017.

S.S.C. Liao and R.V. Whitman, Catalogue of A Liquefaction and Non-Liquefaction Occurrences During Earthquakes, Cambridge: Department of Civil Engineering, Massachusetts Institute of Technology, 1986.

BSN, SNI 4153:2019 Metode Uji Penetrasi Standar (SPT) dan Pengambilan Contoh Tanah dengan Tabung Belah, Jakarta: Badan Standarisasi Nasional, 2019.

BSN, SNI 3423:2008 Cara Uji Analisis Ukuran Butir Tanah, Jakarta: Badan Standarisasi Nasional, 2018.

P.K. Robertson and C.E. Wride, “Cyclic Liquefaction and Its Evaluation Based on the SPT and CPT”, Proceeding of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, p. 41, 1997.

H.C. Hardiyatmo, Analisis dan Perancangan Fondasi II, Yogyakarta: Gadjah Mada University Press, 2015.

B.M. Das, Principles of Foundation Engineering, Stamford: Cengage Learning, 2007.

J.E. Bowles, Foundation Analysis and Design, Singapore: The McGraw-Hill Companies, Inc., 1996.

BSN, SNI 1726:2019 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung Dan Nongedung, Jakarta: Badan Standarisasi Nasional, 2019.

A. Hakam and E. Suhelmidawati, “Liquefaction Due to September 30th 2009 Earthquake in Padang”, Procedia Engineering, vol. 54, p. 140, 2013.

W. Wen-shao, “Some Findings in Soil Liquefaction”, Chinese Journal of Geotechnical Engineering, vol. 2, no. 3, p. 55, 1980.

S. Toprak and T.L. Holzer, “Liquefaction Potential Index: Field Assessment”, Journal of Geotechnical and Geoenvironmental Engineering, vol. 129, no. 4, p. 315, 2003.

C.V. Sanjaya Karya, Laporan Perhitungan Struktur Dermaga, Kendari: Dinas Pekerjaan Umum, 2020.

S. Kawengian, S. Balamba, and A.N. Sarajar, “Analisis Daya Dukung Lateral pada Tiang Pancang Kelompok di Dermaga Belang”, Jurnal Sipil Statik, vol. 6, no. 9, p. 683, 2018.

D. Oktaferdian and S. Leman, “Analisis Kinerja Tiang Dengan Variasi Kemiringan di Dermaga ‘SJ’ Bandar Lampung”, MTS: Jurnal Mitra Teknik Sipi, vol. 4, no. 4, p. 823, 2021.

A. Minmahddun, “Analisis Daya Dukung Aksial dan Defleksi Tiang Pancang Dermaga”, Media Konstruksi, vol. 7, no. 1, p. 1, 2022.

B. Triatmodjo, Perencanaan Pelabuhan, Yogyakarta: Beta Offset, 2016.

S.F. Bartlett and T.L. Youd, “Empirical Prediction of Liquefaction-Induced Lateral Spread”, Journal of Geotechnical Engineering, vol. 121, no. 4, p. 316, 1995.

T. Abdoun, R. Dobry, T.D.O’Rourke, and S.H. Goh, “Pile Response to Lateral Spreads: Centrifuge Modeling”, Journal of Geotechnical and Geoenvironmental engineering, vol. 129, no. 10, p. 869, 2003.

J.A. Knappett and S.P.G. Madabhushi, “Seismic Bearing Capacity of Piles in Liquefiable Soils”, Soils Foundation, vol. 49, no. 4, p. 525, 2009.

I.M.W. Pramana and S.N. Fitri, “The Decrease of the Bearing Capacity of Single Pile Foundation During Earthquake on Liquefiable Soil (Study Case: Birobuli Area, South Palu)”, IOP Conference Series: Earth and Environmental Science, vol. 1314, no. 1, p. 1, 2024.

P.S.O. Kardogan, N.S. Isik, M.I. Onur, and S. Bhattacharya, “A Study on the Laterally Loaded Pile Behaviour in Liquefied Soil Using P-Y Method”, IOP Conference Series: Earth and Environmental Science, vol. 471, p. 1, 2019.

A. Janalizadeh and A. Zahmatkesh, “Lateral Response of Pile Foundations in Liquefiable Soils”, Journal of Rock Mechanics and Geotechnical Engineering, vol. 7, no. 5, p. 532, 2015.

Downloads

Published

2024-08-29

How to Cite

Minmahddun, A., & Mangidi, U. (2024). Evaluasi Dimensi Tiang Pancang Dermaga di Daerah Pesisir Kabupaten Kolaka dengan Mempertimbangkan Pengaruh Likuifaksi. REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development, 5(2). https://doi.org/10.22487/renstra.v5i2.686

Issue

Section

Articles