Pemodelan Resiko Kecelakaan Berbasis Kondisi Kendaraan dan Pengemudi
DOI:
https://doi.org/10.22487/renstra.v2i2.332Keywords:
traffic accidents, multinomial logistics regression, accident risk, accident factors.Abstract
Traffic accidents are particularly prone to occur mainly caused by vehicle speed, vehicle damage, alcohol influence, and fatigue. The study aims to model the risk of vehicle and driver-based accidents occurring across Queensland, Australia. The data in this study used a dataset of accident factors on Queensland state roads totaling 3412 accidents sourced from the Australian state government of Queensland. Research data period from 2001-2019. This research method uses multinomial logistic regression modeling analysis. The results of this study produced several models, namely; (1) Log odds in the risk level of death vs hospitalization will increase by 1,028 if affected by vehicle damage, increase by 0.731 if affected by fatigue, increase by 0.158 if affected by vehicle speed, increase by 0.151 if influenced by alcohol. (2) Log opportunities in the risk level of death vs. medical care will increase by 0.786 if affected by vehicle damage, increase by 0.375 if affected by fatigue, decrease by 0.003 if affected by vehicle speed, decrease by 0.078 if influenced by alcohol. (3) Log odds in the risk of death vs minor injury will increase by 0.484 if affected by vehicle damage, increase by 0.245 if affected by fatigue, decrease by 0.156 if affected by vehicle speed, decrease by 0.266 if influenced by alcohol. (4) Log odds in the risk of death vs property damage will increase by 1,254 if affected by vehicle damage, increase by 0.828 if affected by fatigue, increase by 0.185 if influenced by vehicle speed, increase by 0.128 if influenced by alcohol. The validation test value with crosstab method explains that the accuracy result of level 1 has an accuracy value of 0.99 and inaccuracy of 0.01 then the result of level 2 to level 5 has an accuracy value of 1.
Downloads
References
https://www.data.qld.gov.au/dataset/crash-data-from-queensland-roads (diakses tanggal 29 Maret 2021)
E.S. Hutabarat, “Analisa Potensi Resiko Keselamatan Pengemudi Barang Bahan Berbahaya dan Beracun Berdasarkan Agreement for Transport of Dangerous Goods by Road (ADR)”, Jurnal Penelitian Transportasi Darat, vol. 21, no. 2, p. 125, 2019.
L.A. Nugroho, H. Sulistio, and A. Kusuma, “Karakteristik Pengemudi dan Model Peluang Terjadinya Kecelakaan Bus Antar Kota Antar Propinsi”, Jurnal Rekayasa Sipil, vol. 6, no. 1, p. 42, 2012.
D.G.N. da Costa, “Analisis Resiko Kecelakaan Pengguna Sepeda Motor, International Symposium of the Indonesian inter University Transport Studies”, vol. 15, p. 1, 2012.
T. Permanawati, H. Sulistio, and A. Wicaksono, “Model Peluang Kecelakaan Sepeda Motor Berdasarkan Karakteristik Pengendara (Studi Kasus: Surabaya, Malang dan Sragen)”, Jurnal Rekayasa Sipil, vol. 4, no. 3, p. 186, 2010.
B. Haryadi, “Eksplorasi Model Tingkat Kecelakaan Lalu Lintas”, Jurnal Teknik Sipil dan Perencanaan, vol. 13, no. 1, p. 2013.
F. Wensheng and X. Jianping, “Study on Risk Factors for Transport Crashes Involving Fatigued Professional Drivers”, Advanced Materials Research, vol. 790, p. 458, 2013.
L.A. Rakhmat, A. Kusumawati, R.B, Frazila, and S. Hendarto, “Pengembangan Model Prediksi Kecelakaan Lalu Lintas pada Jalan Tol Purbaleunyi”, Jurnal Teknik Sipil, vol. 19, no. 3, p. 277, 2012.
V.D. Fridayanti and D. Prasetyanto, “Model Hubungan antara Angka Korban Kecelakaan Lalu Lintas dan Faktor Penyebab Kecelakaan pada Jalan Tol Purbaleunyi”, RekaRacana: Jurnal Teknil Sipil, vol. 5, no. 2, p. 124, 2019.
W. Wesli, “Pengaruh Pengetahuan Berkendaraan Terhadap Perilaku Pengendara Sepeda Motor Menggunakan Structural Equation Model (SEM)”, Teras Jurnal, vol. 5, no. 2, p. 43, 2015.
W.N. Venables and B.D. Ripley, Statistic and Somputing (Edisi ke-4), New York: Springer Science Business, 2002.
Miranti, F.Y. Rumlawang, F. Kondolembang, “Pemodelan Faktor -Faktor Penyebab Keparahan Korban Kecelakaan Lalu Lintas di Kota Ambon Dengan Menggunakan Model Regresi Logistik Multinomial”, Variance, vol. 1, no. 1, p. 17, 2019.
M.C. Taylor, D.A. Lynam, and A. Baruya, The Effects of Driver´s Speed on the Frequency of Road Accidents (TRL Report 421), Crowthorne: Transport Research Laboratory, 2000.
https://media.readthedocs.org/pdf/little-book-of-r-for-multivariate-analysis/latest/little-book-of-r-for-multivariate-analysis.pdf (diakses pada tanggal 09 Maret 2021)
http://cran.r-project.org/web/packages/nnet/nnet.pdf (diakses pada tanggal 08 April 2021)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development
This work is licensed under a Creative Commons Attribution 4.0 International License.